For Wendy and Rosalie, new lights in my life.
Key Features of this Edition!

- **300+ full-color illustrations**
- **Larger 8½ × 11 trim size** complements the new full-color art
- **Discussion of the latest advances in molecular and cellular biology** in the context of neuroanatomy
- **Coverage of the basic structure and function of the brain, spinal cord, and peripheral nerves** as well as clinical presentations of disease processes involving specific structures
- **Clinical Correlations and case studies** to help you interpret and remember essential neuroanatomic concepts in terms of function and clinical application

CLINICAL CORRELATIONS

Abnormal rodents (hamsters, ferrets, hampsters) may occur in any location in or around the spinal cord. Tests (tongue movements, uncoordinated) are often located in the lower extremity, and patients may exhibit the classic symmetrical upper motor neuron signs. The symptoms may progress rapidly and are severe in some cases. If diagnosed early, however, it may be slowly treated. This suggests that spinal cord compression requires urgent surgery. Structural abnormalities usually occur in the subarachnoid space, and rapid spinal cord compression may occur with the disease progression. The symptoms may include numbness, tingling, weakness, and paralysis. This leads to the dysfunction of spinal cord function. Clinical diagnosis is described in a patient with an epidural abscess.

Maps of the World Within the Brain

Maps of the world within the brain are unique aspects of the cortex of the human brain. For example, the auditory cortex is divided into the speech areas, which are concerned with the integration of auditory information. The visual cortex is divided into the visual areas, which are concerned with the integration of visual information. The somatosensory cortex is divided into the somatosensory areas, which are concerned with the integration of somatosensory information.

PERIPHERAL NERVOUS SYSTEM

The peripheral nervous system (PNS) consists of spinal nerves, cranial nerves, and their associated ganglia. The PNS is divided into two main parts: the somatic nervous system, which is responsible for voluntary control of movement, and the autonomic nervous system, which controls the involuntary functions of the body, such as heart rate, blood pressure, and digestion.

TABLE 1-2

<table>
<thead>
<tr>
<th>Terms Used in Neuroanatomy</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cranial</td>
<td>On the head and face</td>
</tr>
<tr>
<td>Spinal</td>
<td>On the backside</td>
</tr>
<tr>
<td>Superior</td>
<td>On the top side</td>
</tr>
<tr>
<td>Inferior</td>
<td>On the bottom side</td>
</tr>
<tr>
<td>Caudal</td>
<td>At the lowermost part (on the tail-end)</td>
</tr>
<tr>
<td>Medial</td>
<td>Close to the middle</td>
</tr>
<tr>
<td>Lateral</td>
<td>Far from the middle</td>
</tr>
<tr>
<td>Ipsilateral</td>
<td>On the same side</td>
</tr>
<tr>
<td>Contralateral</td>
<td>On the opposite side</td>
</tr>
<tr>
<td>Bilateral</td>
<td>On both sides</td>
</tr>
</tbody>
</table>
• Numerous computed tomography (CT) and magnetic resonance images (MRIs) of the normal brain and spinal cord; functional magnetic resonance images that provide a noninvasive window on brain function; and neuroimaging studies that illustrate common pathological entities that affect the nervous system, including stroke, intracerebral hemorrhage, and tumors of the brain and spinal cord

• Introduction to Clinical Thinking section explains how to use neuroanatomy as a basis for analyzing the disordered nervous system

• Numerous tables that make information clear and easy to remember

• A complete practice exam to test your knowledge
Contents

Preface xi

SECTION I
BASIC PRINCIPLES 1

1. Fundamentals of the Nervous System 1
 General Plan of the Nervous System 1
 Peripheral Nervous System 5
 Planes and Terms 5
 References 6

2. Development and Cellular Constituents of the Nervous System 7
 Cellular Aspects of Neural Development 7
 Neurons 7
 Neuronal Groupings and Connections 11
 Neuroglia 11
 Degeneration and Regeneration 15
 Neurogenesis 17
 References 18

3. Signaling in the Nervous System 19
 Membrane Potential 19
 Generator Potentials 20
 Action Potentials 20
 The Nerve Cell Membrane Contains Ion Channels 21
 The Effects of Myelination 22
 Conduction of Action Potentials 23
 Synapses 24
 Clinical Illustration 3–1 24
 Synaptic Transmission 26
 Excitatory and Inhibitory Synaptic Actions 27
 Synaptic Plasticity and Long-Term Potentiation 27
 Presynaptic Inhibition 28
 The Neuromuscular Junction and the End-Plate Potential 28
 Neurotransmitters 29
 Case 1 31
 References 32

SECTION II
INTRODUCTION TO CLINICAL THINKING 33

4. The Relationship Between Neuroanatomy and Neurology 33
 Symptoms and Signs of Neurologic Diseases 33
 Where is the lesion? 36
 What is the lesion? 38
 Clinical Illustration 4–1 39
 Clinical Illustration 4–2 39
 The Role of Neuroimaging and Laboratory Investigations 39
 The Treatment of Patients with Neurologic Disease 40
 Clinical Illustration 4–3 40
 Clinical Illustration 4–4 40
 Clinical Illustration 4–5 41
 References 41

SECTION III
SPINAL CORD AND SPINE 43

5. The Spinal Cord 43
 Development 43
 External Anatomy of the Spinal Cord 43
 Spinal Roots and Nerves 46
 Internal Divisions of the Spinal Cord 48
 Pathways in White Matter 50
 Clinical Illustration 5–1 55
 Reflexes 56
 Lesions in the Motor Pathways 60
 Examples of Specific Spinal Cord Disorders 63
 Case 2 64
 Case 3 64
 References 65
6. The Vertebral Column and Other Structures Surrounding the Spinal Cord 67
 Investing Membranes 67
 Spinal Cord Circulation 68
 The Vertebral Column 69
 Clinical Illustration 6–1 69
 Clinical Illustration 6–2 71
 Lumbar Puncture 71
 Imaging of the Spine and Spinal Cord 73
 Case 4 73
 Case 5 74
 References 77

SECTION IV
ANATOMY OF THE BRAIN 79

7. The Brain Stem and Cerebellum 79
 Development of the Brain Stem and Cranial Nerves 79
 Brain Stem Organization 79
 Cranial Nerve Nuclei in the Brain Stem 82
 Medulla 82
 Pons 87
 Midbrain 88
 Vascularization 89
 Clinical Illustration 7–1 90
 Cerebellum 91
 Clinical Illustration 7–2 92
 Clinical Illustration 7–3 92
 Clinical Illustration 7–4 96
 Case 6 98
 Case 7 98
 References 98

8. Cranial Nerves and Pathways 99
 Origin of Cranial Nerve Fibers 99
 Functional Components of the Cranial Nerves 99
 Anatomic Relationships of the Cranial Nerves 102
 Case 8 116
 Case 9 116
 References 118

9. Diencephalon 119
 Thalamus 119
 Hypothalamus 121
 Subthalamus 126
 Epithalamus 127
 Circumventricular Organs 128
 Case 10 129
 References 129

10. Cerebral Hemispheres/Telencephalon 131
 Development 131
 Anatomy of the Cerebral Hemispheres 131
 Microscopic Structure of the Cortex 136

 Clinical Illustration 10–1 140
 Physiology of Specialized Cortical Regions 142
 Basal Ganglia 143
 Internal Capsule 144
 Case 11 147
 Case 12 147
 References 147

11. Ventricles and Coverings of the Brain 149
 Ventricular System 149
 Meninges and Submeningeal Spaces 150
 CSF 152
 Barriers in the Nervous System 154
 Skull 156
 Case 13 160
 Case 14 161
 References 162

12. Vascular Supply of the Brain 163
 Arterial Supply of the Brain 163
 Venous Drainage 165
 Cerebrovascular Disorders 169
 Clinical Illustration 12–1 175
 Case 15 177
 Case 16 178
 References 181

SECTION V
FUNCTIONAL SYSTEMS 183

13. Control of Movement 183
 Control of Movement 183
 Major Motor Systems 183
 Motor Disturbances 189
 Case 17 193
 Case 18 194
 References 194

14. Somatosensory Systems 195
 Receptors 195
 Connections 195
 Sensory Pathways 195
 Cortical Areas 196
 Pain 196
 Case 19 199
 Case 20 200
 References 200

15. The Visual System 201
 The Eye 201
 Visual Pathways 205
 The Visual Cortex 209
 Clinical Illustration 15–1 210
 Case 21 214
 References 214
Section VI
Diagnostic Aids

22. Imaging of the Brain
- Skull X-Ray Films
- Angiography
- Computed Tomography
- Magnetic Resonance Imaging
- Magnetic Resonance Spectroscopy
- Diffusion-Weighted Imaging
- Functional MRI
- Positron Emission Tomography
- Single Photon Emission CT
- References

23. Electrodiagnostic Tests
- Electroencephalography
- Evoked Potentials
- Transcranial Motor Cortical Stimulation
- Electromyography
- Nerve Conduction Studies
- References

24. Cerebrospinal Fluid Examination
- Indications
- Contraindications
- Analysis of the CSF
- Reference

Section VII
Discussion of Cases

25. Discussion of Cases
- The Location of Lesions
- The Nature of Lesions
- Cases
- References

Appendix A: The Neurologic Examination
Appendix B: Testing Muscle Function
Appendix C: Spinal Nerves and Plexuses
Appendix D: Questions and Answers

Index
Preface

Very few organ systems, if any, present as fascinating an array of structures and mechanisms as the human brain and spinal cord. Furthermore, it is hard to think of a clinical field that does not encompass at least some aspect of the neurosciences, from molecular and cellular neurobiology through motor, sensory, and cognitive neuroscience, to human behavior and even social interactions. It is the brain, in fact, that makes us uniquely human. No surprise, then, that neuroscience has emerged as one of the most exciting fields of research and now occupies a central role as a substrate for clinical medicine.

One of the unique things about the nervous system is its exquisite architecture. The nervous system contains more cell types than any other organ or organ system, and its constituent nerve cells—more than 100,000,000,000 of them—and an even larger number of supportive glial cells are arranged in a complex but orderly, and functionally crucial, way. Many disease processes affect, in a direct or indirect way, the nervous system. Thus, every clinician, and every basic scientist with an interest in clinical disease, needs an understanding of neuroanatomy. Stroke remains the most frequent cause of death in most industrialized societies; mood disorders such as depression affect more than 1 person in 10; and clinical dysfunction of the nervous system occurs in 25% of patients in most general hospital settings at some time during their hospital stay. An understanding of neuroanatomy is crucial not only for neurologists, neurosurgeons, and psychiatrists but also for clinicians in all subspecialties, since patients of every stripe will present situations that require an understanding of the nervous system, its structure, and its function.

This book, now in its 27th edition, is designed as an accessible, easy-to-remember synopsis of neuroanatomy and its functional and clinical implications. Since many of us learn and remember better when material is presented visually, this book is well illustrated not only with clinical material such as brain scans and pathological specimens but also with hundreds of diagrams and tables that are designed to be clear, explicative, and memorable. This book is not meant to supplant longer, comprehensive handbooks on neuroscience and neuroanatomy. On the contrary, it has been designed to provide a manageable and concise overview for busy medical students and residents, as well as trainees in health-related fields such as physical therapy; graduate students and postdoctoral fellows with an interest in neuroanatomy and its functional underpinnings; and clinicians in practice, for whom minutes are precious.

This book is unique in containing a section entitled “Introduction to Clinical Thinking,” which introduces the reader, early in the text, to the logical processes involved in using neuroanatomy as a basis for thinking about patients. Since some trainees remember patients better than isolated facts, I have included discussions of clinical correlates and clinical illustrations that synthesize the most important characteristics of patients selected from an extensive clinical experience. Also included are illustrative clinical images including computer tomography (CT) and magnetic resonance imaging (MRI), both of normal brain and spinal cord, and of common clinical entities that trainees will likely encounter.

As with past editions, I owe a debt of gratitude to many colleagues and friends, especially members of the Department of Neurology at Yale Medical School. Joachim Baehring, MD, and Joseph Schindler, MD, of Yale, as well as Catharina Faber, MD, at the University of Maastricht contributed invaluable clinical illustrations. Over the years, these colleagues and friends have helped to create an environment where learning is fun, a motif that I have woven into this book. I hope that readers will join me in finding that neuroanatomy, which provides much of the foundation for both neuroscience and clinical medicine, can be enjoyable, memorable, and easily learned.

Stephen G. Waxman, MD, PhD
New Haven, Connecticut
April 2013